My last blog post on optimization helped me generate orthogonal sequences. Now, I will use those sequences to separate two signals. The basic use case is a linear system with two inputs, one output, and instead of recording the response of one input at a time, one plays both inputs simultaneously with specific sequences so that they can be separated in another process.

Read More

Although I’m fond of numerical optimization through gradients, … there are some times where a global optimization is much more powerfull. For instance, I have to generate two sequences/combs that are orthogonal and for which their autocorrelation is almost an impulse. The two combs have a fixed number of impulse, so it’s a perfect job for genetic algorithms.

Read More

It’s been a while since I last blogged about manifold learning. I don’t think I’ll add much in terms of algorithms to the scikit, but now that a clear API is being defined (http://sourceforge.net/apps/trac/scikit-learn/wiki/ApiDiscussion), it’s time for the manifold module to comply to it. Also, documentation will be enhanced and some dependencies will be removed.

I’ve started a branch available on github.com, and I will some examples in the scikit as well. I may explain them here, but I won’t rewrite what is already published. A future post will explain the changes, and I hope that interested people will understand the modifications and apply them to my former posts. It’s just that I don’t have much time to change everything…

We have now several petaflopic clusters available in the Top500. Of course, we are trying to get the most of their peak computational power, but I think we should sometimes also look at optimal resource allocation.

I’ve been thinking about this for several months now, for work that has thousands of tasks, each task being massively data parallel. Traditionnally, one launches a job through one’s favorite batch scheduler (favorite or mandatory…) with fixed resources and during an estimated amount of time. This may work well in research, but in the industrial world, there often a new job that arises and that needs part of your scarce resources. You may have to stop your work, loose your current advances and/or restart the job with less resources. And then the cycle goes on.

Read More